Regulation of Growth Factor-Induced Signaling by Protein-Tyrosine-Phosphatases (44153)


    loading  Checking for direct PDF access through Ovid

Abstract

Abstract.The binding of a growth factor to its specific receptor catalyzes a complex cascade of intracellular signaling events, characterized by changes in the phosphorylation state of many key proteins. Among these phosphorylation events, tyrosine phosphorylation plays a prominent role in the transmission of postreceptor signals. The state of tyrosine phosphorylation is regulated by the actions of protein-tyrosine kinases (PTKs) and protein-tyrosine-phosphatases (PTPs). Dysregulation of either event can lead to abnormal cellular responses. PTPs generally act to regulate negatively-that is, to turn off-any signals generated by PTKs. However, this is not always the case, as seen by the phosphatase SHP-2, which can either be a positive or negative regulator of signal transduction depending on the particular cellular context. In addition, a novel family of dual specificity phosphatases has been recently discovered. These enzymes are capable of dephosphorylating phosphotyrosine and phosphothreonine/phosphoserine residues, and seem to play a significant role in attenuating the action of MAP kinases. Several themes appear throughout PTP regulation of growth factor signaling, including positive or negative regulation, importance of cell/tissue type, identity of the receptor activated, and subcellular localization. Although only a handful of PTPs have been identified, the present work done in elucidating their function has revealed their significance in the maintenance of normal physiological responses to growth factors.

    loading  Loading Related Articles