Enhanced meta-analysis of acetylcholine binding protein structures reveals conformational signatures of agonism in nicotinic receptors

    loading  Checking for direct PDF access through Ovid


The soluble acetylcholine binding protein (AChBP) is the default structural proxy for pentameric ligand-gated ion channels (LGICs). Unfortunately, it is difficult to recognize conformational signatures of LGIC agonism and antagonism within the large set of AChBP crystal structures in bothapoand ligand-bound states, primarily because AChBP conformations in this set are nearly superimposable (root mean square deviation < 1.5 Å). We have undertaken a systematic, alignment-free approach to elucidate conformational differences displayed by AChBP that cleanly differentiateapo/antagonist-bound from agonist-bound states. Our approach uses statistical inference based on both crystallographic states and conformations sampled during long molecular dynamics simulations to select important inter-Cα distances and map their collective values onto functional states. We observe that binding of (nAChR) agonists to AChBP elicits clockwise rotation of the inner β-sheet with respect to the outer β-sheet, causing tilting of the cys-loop away from the five-fold axis, in a manner quite similar to that speculated for α-subunits of the heteromeric nAChR structure (Unwin, J Mol Biol 2005;346:967), making this motion potentially important in transmission of the gating signal to the transmembrane domain of a LGIC. The method is also successful at discriminating partial from full agonists and supports the hypothesis that a particularly controversial ligand, lobeline, is in fact an LGIC antagonist.

Related Topics

    loading  Loading Related Articles