Hepatitis E virus capsid protein assembles in 4Murea in the presence of salts

    loading  Checking for direct PDF access through Ovid

Abstract

The hepatitis E virus (HEV) capsid protein has been demonstrated to be able to assemble into particlesin vitro. However, this process and the mechanism of protein–protein interactions during particle assembly remain unclear. In this study, we investigated the assembly mechanism of HEV structural protein subunits, the capsid protein p239 (aa368–606), using analytical ultracentrifugation. It was the first to observe that the p239 can form particles in 4Murea as a result of supplementation with salt, including ammonium sulfate [(NH4)2SO4], sodium sulfate (Na2SO4), sodium chloride (NaCl), and ammonium chloride (NH4Cl). Interestingly, it is the ionic strength that determines the efficiency of promoting particle assembly. The assembly rate was affected by temperature and salt concentration. When (NH4)2SO4 was used, assembling intermediates of p239 with sedimentation coefficient values of approximately 5 S, which were mostly dodecamers, were identified for the first time. A highly conserved 28-aa region (aa368–395) of p239 was found to be critical for particle assembly, and the hydrophobic residues Leu372, Leu375, and Leu395of p239 was found to be critical for particle assembly, which was revealed by site-directed mutagenesis. This study provides new insights into the assembly mechanism of native HEV, and contributes a valuable basis for further investigations of protein assembly by hydrophobic interactions under denaturing conditions.

Related Topics

    loading  Loading Related Articles