Transforming Pain With Prosocial Meaning: A Functional Magnetic Resonance Imaging Study

    loading  Checking for direct PDF access through Ovid

Abstract

Objective

Contextual factors can transform how we experience pain, particularly if pain is associated with other positive outcomes. Here, we test a novel meaning-based intervention. Participants were given the opportunity to choose to receive pain on behalf of their romantic partners, situating pain experience in a positive, prosocial meaning context. We predicted that the ventromedial prefrontal cortex (vmPFC), a key structure for pain regulation and generation of affective meaning, would mediate the transformation of pain experience by this prosocial interpersonal context.

Methods

We studied fMRI activity and behavioral responses in 29 heterosexual female participants during (1) a baseline pain challenge and (2) a task in which participants decided to accept a self-selected number of additional pain trials to reduce pain in their male romantic partners (“accept-partner-pain” condition).

Results

Enduring extra pain for the benefit of the romantic partner reduced pain-related unpleasantness (t = −2.54, p = .016) but not intensity, and increased positive thoughts (t = 3.60, p = .001) and pleasant feelings (t = 5.39, p < .0005). Greater willingness to accept the pain of one's partner predicted greater unpleasantness reductions (t = 3.94, p = .001) and increases in positive thoughts (r = .457, p = .013). The vmPFC showed significant increases (q < .05 FDR-corrected) in activation during accept-partner-pain, especially for women with greater willingness to relieve their partner's pain (t = 2.63, p = .014). Reductions in brain regions processing pain and aversive emotion significantly mediated reductions in pain unpleasantness (q < .05 FDR-corrected).

Conclusions

The vmPFC has a key role in transforming the meaning of pain, which is associated with a cascade of positive psychological and brain effects, including changes in affective meaning, value, and pain-specific neural circuits.

Related Topics

    loading  Loading Related Articles