Genetic Variation in the Exome: Associations With Alcohol and Tobacco Co-Use

    loading  Checking for direct PDF access through Ovid


Shared genetic factors represent one underlying mechanism thought to contribute to high rates of alcohol and tobacco co-use and dependence. Common variants identified by molecular genetic studies tend to confer only small disease risk, and rare protein-coding variants are posited to contribute to disease risk, as well. However, given that genotyping technologies allowing for their inclusion in association studies have only recently become available, the magnitude of their contribution is poorly understood. The current study examined genetic variation in protein-coding regions (i.e., the exome) for associations with measures of lifetime alcohol and tobacco co-use. Participants from the UCSF Family Alcoholism Study (N = 1,862) were genotyped using an exome-focused genotyping array, and assessed for DSM–IV diagnoses of alcohol and tobacco dependence and quantitative consumption measures using a modified version of the Semi-Structured Assessment for the Genetics of Alcoholism. Analyses included single variant, gene-based, and pathway-based tests of association. One EMR3 variant and a pathway related to genes upregulated in mesenchymal stem cells during the late phase of adipogenesis met criteria for statistical significance. Suggestive associations were consistent with previous findings from studies of substance use and dependence, including variants in the CHRNA5–CHRNA3–CHRNB4 gene cluster with cigarettes smoked per day. Further, several variants and genes demonstrated suggestive association across phenotypes, suggesting that shared genetic factors may underlie risk for increased levels of alcohol and tobacco use, as well as psychopathology more broadly, providing insight into our understanding of the genetic architecture underlying these traits.

    loading  Loading Related Articles