Polymorphisms of coding trinucleotide repeats of homeogenes in neurodevelopmental psychiatric disorders

    loading  Checking for direct PDF access through Ovid

Abstract

Objectives

Autism (MIM♯209850) and schizophrenia (MIM♯181500) are both neurodevelopmental psychiatric disorders characterized by a highly genetic component. Homeogenes and forkhead genes encode transcription factors, which have been involved in brain development and cell differentiation. Thus, they are relevant candidate genes for psychiatric disorders. Genetic studies have reported an association between autism and DLX2, HOXA1, EN2, ARX, and FOXP2 genes whereas only three studies of EN2, OTX2, and FOXP2 were performed on schizophrenia. Interestingly, most of these candidate genes contain trinucleotide repeats coding for polyamino acid stretch in which instability can be the cause of neurodevelopmental disorders. Our goal was to identify variations of coding trinucleotide repeats in schizophrenia, autism, and idiopathic mental retardation.

Methods

We screened the coding trinucleotide repeats of OTX1, EN1, DLX2, HOXA1, and FOXP2 genes in populations suffering from schizophrenia (247 patients), autism (98 patients), and idiopathic mental retardation (56 patients), and compared them with control populations (112 super controls and 202 healthy controls).

Results

Novel deletions and insertions of coding trinucleotide repeats were found in the DLX2, HOXA1, and FOXP2 genes. Most of these variations were detected in controls and no difference in their distribution was observed between patient and control groups. Two different polymorphisms in FOXP2 were, however, found only in autistic patients and the functional consequences of these variations of repeats have to be characterized and correlated to particular clinical features.

Conclusion

This study did not identify specific disease risk variants of trinucleotide repeats in OTX1, EN1, DLX2, HOXA1, and FOXP2 candidate genes in neurodevelopmental psychiatric disorders.

Related Topics

    loading  Loading Related Articles