Role of HiPIP as electron donor to the RC-bound cytochrome in photosynthetic purple bacteria

    loading  Checking for direct PDF access through Ovid


High-Potential Iron-Sulfur Proteins (HiPIP) are small electron carriers, present only in species of photosynthetic purple bacteria having a RC-bound cytochrome. Their participation in the photo-induced cyclic electron transfer was recently established for Rubrivivax gelatinosus, Rhodocyclus tenuis and Rhodoferax fermentans (Schoepp et al. 1995; Hochkoeppler et al. 1996a, Menin et al. 1997b). To better understand the physiological role of HiPIP, we extended our study to other selected photosynthetic bacteria. The nature of the electron carrier in the photosynthetic pathway was investigated by recording light-induced absorption changes in intact cells. In addition, EPR measurements were made in whole cells and in membrane fragments in solution or dried immobilized, then illuminated at room temperature. Our results show that HiPIP plays an important role in the reduction of the photo-oxidized RC-bound cytochrome in the following species: Ectothiorhodospira vacuolata, Chromatium vinosum, Chromatium purpuratum and Rhodopila globiformis. In Rhodopseudomonas marina, the HiPIP is not photo-oxidizible in whole cells and in dried membranes, suggesting that this electron carrier is not involved in the photosynthetic pathway. In Ectothiorhodospira halophila, the photo-oxidized RC-bound cytochrome is reduced by a high midpoint potential cytochrome c, in agreement with midpoint potential values of the two iso-HiPIPs (+ 50 mV and + 120 mV) which are too low to be consistent with their participation in the photosynthetic cyclic electron transfer.

Related Topics

    loading  Loading Related Articles