A Decision-Tree Approach to the Assessment of Posttraumatic Stress Disorder: Engineering Empirically Rigorous and Ecologically Valid Assessment Measures

    loading  Checking for direct PDF access through Ovid

Abstract

Structured diagnostic interviews are widely considered to be the optimal method of assessing symptoms of posttraumatic stress; however, few clinicians report using structured assessments to guide clinical practice. One commonly cited impediment to these assessment approaches is the amount of time required for test administration and interpretation. Empirically keyed methods to reduce the administration time of structured assessments may be a viable solution to increase the use of standardized and reliable diagnostic tools. Thus, the present research conducted an initial feasibility study using a sample of treatment-seeking military veterans (N = 1,517) to develop a truncated assessment protocol based on the Clinician-Administered Posttraumatic Stress Disorder (PTSD) Scale (CAPS). Decision-tree analysis was utilized to identify a subset of predictor variables among the CAPS items that were most predictive of a diagnosis of PTSD. The algorithm-driven, atheoretical sequence of questions reduced the number of items administered by more than 75% and classified the validation sample at 92% accuracy. These results demonstrated the feasibility of developing a protocol to assess PTSD in a way that imposes little assessment burden while still providing a reliable categorization.

Related Topics

    loading  Loading Related Articles