Gene signatures in osteoarthritic acetabular labrum using microarray analysis

    loading  Checking for direct PDF access through Ovid

Abstract

Background:

Osteoarthritis (OA) is the most common chronic joint disease. This study aimed to uncover underlying mechanisms of OA pathogenesis and explore the potential biomarkers of osteoarthritic acetabular labrum.

Methods:

The microarray data GSE60762 was utilized, containing five OA acetabular labrum samples and three healthy control samples. Data were preprocessed by oligo package and the differentially expressed genes (DEGs) were identified using limma package with predefined criteria, followed by functional enrichment analysis by the GoFunction in R Bioconductor, and protein–protein interaction (PPI) network analysis.

Results:

As a result, 141 DEGs (44 were up-regulated and 97 were down-regulated) were identified between OA and healthy acetabular labrum cells. Up-regulated genes including CDH2 and WNT5A were significantly enriched in intracellular signal transduction function, while down-regulated genes such as KDR, FLT1 and CDH5 were remarkably correlated with cardiovascular system development. FLT1, KDR, CDH2 and CDH5 were the striking nodes in the PPI network.

Conclusion:

CDH2, WNT5A, KDR, FLT1 and CDH5 might serve as the biomarkers of OA prognosis. Intracellular signal transduction and cardiovascular system development might play significant roles in the destruction of labrum during OA progression. However, more experimental validations are warranted to confirm our findings.

    loading  Loading Related Articles