Granger causality reveals a dominant role of memory circuit in chronic opioid dependence

    loading  Checking for direct PDF access through Ovid

Abstract

Resting-state magnetic resonance imaging has uncovered abnormal functional connectivity in heroin-dependent individuals (HDIs). However, it remains unclear how brain regions implicated in addictions are related in baseline state without conditioned cues in heroin dependent individuals during opioid maintenance treatment (HDIs-OMT). Previous connectivity analysis assessed the strength of correlated activity between brain regions but lacked the ability to infer directional neural interactions. In the current study, we employed Granger causality analysis to investigate directional causal influences among the brain circuits in HDIs-OMT and non-opioid users. The results revealed a weaker effective connectivity between the caudate nucleus implicated in mediating the reward circuit and other brain regions and also a weaker connectivity between the anterior cingulate cortex and medial prefrontal cortex implicated in mediating inhibitory control. Conversely, HDIs-OMT exhibited stronger effective connectivity between the hippocampus and amygdala implicated in mediating learning-memory, and the anterior cingulate cortex involved in mediating inhibitory control while the putamen mediated learned habits, suggesting that the hippocampus and amygdala may propel the memory circuit to override the control circuit and drive the learned habit in HDIs-OMT. Alterations in learning-memory and inhibitory control may contribute jointly and form a basis for relapse risk even after a period of heroin abstinence. Sustained neural effect of opioid dependence on methadone maintenance including hyperactivation in the memory circuit and impairment in the control circuit support the role of the memory circuitry in relapse and may help redefine targets for treatment.

The results revealed stronger effective connectivity between the hippocampus and amygdala implicated in mediating learning-memory, and anterior cingulate cortex involved in mediating inhibitory control while putamen mediated the learned habit, suggesting that the hippocampus and anterior cingulate cortex may propel the memory circuit to override the control circuit and drive the learned habit in heroin-dependent individuals during methadone treatment. The results implicate that the learning-memory and inhibitory control may contribute jointly and form a basis for relapse risk.

Related Topics

    loading  Loading Related Articles