Factors affecting optimal linear endovenous energy density for endovenous laser ablation in incompetent lower limb truncal veins – A review of the clinical evidence

    loading  Checking for direct PDF access through Ovid

Abstract

Objectives

The objective is to identify the factors that affect the optimal linear endovenous energy density (LEED) to ablate incompetent truncal veins.

Methods

We performed a literature review of clinical studies, which reported truncal vein ablation rates and LEED. A PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) flow diagram documents the search strategy. We analysed 13 clinical papers which fulfilled the criteria to be able to compare results of great saphenous vein occlusion as defined by venous duplex ultrasound, with the LEED used in the treatment.

Results

Evidence suggests that the optimal LEED for endovenous laser ablation of the great saphenous vein is >80 J/cm and <100 J/cm in terms of optimal closure rates with minimal side-effects and complications. Longer wavelengths targeting water might have a lower optimal LEED. A LEED <60 J/cm has reduced efficacy regardless of wavelength. The optimal LEED may vary with vein diameter and may be reduced by using specially shaped fibre tips. Laser delivery technique and type as well as the duration time of energy delivery appear to play a role in determining LEED.

Conclusion

The optimal LEED to ablate an incompetent great saphenous vein appears to be >80 J/cm and <95 J/cm based on current evidence for shorter wavelength lasers. There is evidence that longer wavelength lasers may be effective at LEEDs of <85 J/cm.

Related Topics

    loading  Loading Related Articles