Metabotropic glutamate receptor, mGlu5, mediates enhancements of hippocampal long-term potentiation after environmental enrichment in young and old mice

    loading  Checking for direct PDF access through Ovid


The metabotropic glutamate (mGlu) receptor, mGlu5, is of particular relevance for hippocampal function. It is critically required for the expression of long-term potentiation (LTP) and long-term depression (LTD), regulates neuronal oscillations, maintains the stability of place fields and is required for hippocampus-dependent memory. MGlu5-dysfunctions are associated with profound cognitive deficits in humans, and mGlu5 has been targeted as a putative cognitive enhancer. Cognitive enhancement, by means of environmental enrichment (EE) in rodents, results in improved hippocampal synaptic plasticity and memory. Here, we explored whether mGlu5 contributes to these enhancements. MGlu5-antagonism dose-dependently impaired the early phase of LTP (>4 h) in the CA1 region of young(3–4 month old) mice. Late-LTP (>24 h) was also impaired. LTP (>24 h) elicited in old (10–14 month old) mice displayed reduced sensitivity to mGlu5 antagonism. Short-term potentiation (STP, < 2 h) that was elicited by weaker afferent stimulation was unaffected by mGlu5-antagonism in both age-groups.

EE significantly amplified STP (<2 h) in old and young animals, but did not increase the duration of synaptic potentiation, or promote induction of LTP. The improvement in STP was prevented by mGlu5-antagonism, in both young and old animals. These results indicate that modifications of the synapse that underlie improvements of LTP by EE require the contribution of mGlu5. Strikingly, although LTP in old mice does not critically depend on mGlu5, improvements in synaptic potentiation resulting from EE are mGlu5-dependent in old mice. Regarded in light of the known role for mGlu5 in hippocampal function and pathophysiology, these data suggest that mGlu5 regulation of synaptic information storage is pivotal to optimal hippocampal function.

This article is part of the Special Issue entitled ‘Metabotropic Glutamate Receptors, 5 years on’.

Related Topics

    loading  Loading Related Articles