Molecular and Functional Noninvasive Immune Monitoring in the ESCAPE Study for Prediction of Subclinical Renal Allograft Rejection

    loading  Checking for direct PDF access through Ovid

Abstract

Background

Subclinical acute rejection (sc-AR) is a main cause for functional decline and kidney graft loss and may only be assessed through surveillance biopsies.

Methods

The predictive capacity of 2 novel noninvasive blood biomarkers, the transcriptional kidney Solid Organ Response Test (kSORT), and the IFN-γ enzyme-linked immunosorbent spot assay (ELISPOT) assay were assessed in the Evaluation of Sub-Clinical Acute rejection PrEdiction (ESCAPE) Study in 75 consecutive kidney transplants who received 6-month protocol biopsies. Both assays were run individually and in combination to optimize the use of these techniques to predict sc-AR risk.

Results

Subclinical acute rejection was observed in 22 (29.3%) patients (17 T cell–mediated subclinical rejection [sc-TCMR], 5 antibody-mediated subclinical rejection [sc-ABMR]), whereas 53 (70.7%) showed a noninjured, preserved (stable [STA]) parenchyma. High-risk (HR), low-risk, and indeterminate-risk kSORT scores were observed in 15 (20%), 50 (66.7%), and 10 (13.3%) patients, respectively. The ELISPOT assay was positive in 31 (41%) and negative in 44 (58.7%) patients. The kSORT assay showed high accuracy predicting sc-AR (specificity, 98%; positive predictive value 93%) (all sc-ABMR and 58% sc-TCMR showed HR-kSORT), whereas the ELISPOT showed high precision ruling out sc-TCMR (specificity = 70%, negative predictive value = 92.5%), but could not predict sc-ABMR, unlike kSORT. The predictive probabilities for sc-AR, sc-TCMR, and sc-ABMR were significantly higher when combining both biomarkers (area under the curve > 0.85, P < 0.001) and independently predicted the risk of 6-month sc-AR in a multivariate regression analysis.

Conclusions

Combining a molecular and immune cell functional assay may help to identify HR patients for sc-AR, distinguishing between different driving alloimmune effector mechanisms.

Related Topics

    loading  Loading Related Articles