Measurement of Extracellular Volume and Transit Time Heterogeneity Using Contrast-Enhanced Myocardial Perfusion MRI in Patients After Acute Myocardial Infarction

    loading  Checking for direct PDF access through Ovid

Abstract

Purpose:

To assess the ability of dynamic contrast-enhanced myocardial perfusion MRI to measure extracellular volume (ECV) and to investigate the possibility of estimating capillary transit time heterogeneity (CTH) in patients after myocardial infarction and successful revascularization.

Methods:

Twenty-four perfusion data sets were acquired on a 3 Tesla positron emission tomography (PET)/MRI scanner. Three perfusion models of different complexity were implemented in a hierarchical fashion with an Akaike information criterion being used to determine the number of fit parameters supported by the data. Results were compared sector-wise to ECV from an equilibrium T1 mapping method (modified look-locker inversion recovery (MOLLI)).

Results:

ECV derived from the perfusion analysis correlated well with equilibrium measurements (R2 = 0.76). Estimation of CTH was supported in 16% of sectors (mostly remote). Inclusion of a nonzero CTH parameter usually led to lower estimates of first-pass extraction and slightly higher estimates of blood volume and flow. Estimation of the capillary permeability-surface area product was feasible in 81% of sectors.

Conclusion:

Transit time heterogeneity has a measurable effect on the kinetic analysis of myocardial perfusion MRI data, and Gd-DTPA extravasation in the myocardium is usually not flow-limited in infarct-related pathology. Measurement of myocardial ECV using perfusion imaging could provide a scan-time efficient alternative to methods based on T1 mapping.

Related Topics

    loading  Loading Related Articles