A Clinical and Molecular Genetic Study in 11 Chinese Children With Peutz-Jeghers Syndrome

    loading  Checking for direct PDF access through Ovid

Abstract

Objectives:

Peutz-Jeghers syndrome (PJS) is caused by the germline mutations in serine/threonine kinase 11 (STK11) gene. The aim of the present study was to investigate the spectrum of STK11 gene mutations using multiplex ligation–dependent probe amplification (MLPA) assay in combination with direct sequencing in Chinese children with PJS.

Methods:

Nine children who met the clinical criteria for PJS and 2 presumed patients with PJS were enrolled in the present study. Patients’ clinical information on polyp characteristics, polyp-related complications, family histories, and so on were reviewed and analyzed. After obtaining informed consent, we performed a mutation analysis of STK11 gene in 11 Chinese patients using MLPA assay and direct sequencing.

Results:

By means of MLPA method, we detected exonic deletions in 5 patients. In details, 1 patient had the complete deletion of all 10 exons, 3 patients showed deletions of promoter region and exon 1, and 1 patient had exon deletions from 1 to 9. By direct sequencing of the coding region of STK11 gene, we identified point mutations in 4 patients at c.548T>G/p.Leu183Arg, c.580G>T/p.Asp194Tyr, c.152_153insGG/Asp53GlyfsX12, and c.631delC/Arg211GlyfsX76, respectively, and 3 of them are novel mutations. We failed to find any mutation in left 2 patients who met the clinical criteria of PJS.

Conclusions:

MLPA plus direct sequencing revealed large genomic deletions of STK11 gene in Chinese children with PJS and increased the detecting rate of STK11 gene mutations in Chinese patients with PJS. MLPA combined with direct sequencing could serve as a better strategy for the genetic diagnosis of PJS in Chinese population.

    loading  Loading Related Articles