Garcinol exhibits anti-proliferative activities by targeting microsomal prostaglandin E synthase-1 in human colon cancer cells

    loading  Checking for direct PDF access through Ovid

Abstract

Background:

Colorectal cancer is the fourth leading cause of death. Various natural compounds are known to have antitumor properties. Garcinol, a polyisoprenylated benzophenone, has antioxidant and anti-inflammatory properties. In the current study, we investigated the anticancer activity of garcinol on human colorectal adenocarcinoma cell line (HT-29) human colon cancer cells.

Methods:

HT-29 cells were treated with various concentrations of garcinol for 24 h. The effect of garcinol on HT-29 cells proliferation was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay; the mRNA expression of microsomal prostaglandin E synthase-1 (mPGES-1), hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), C-X-C chemokine receptor type 4 (CXCR4), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9) were examined by quantitative real-time polymerase chain reaction; apoptosis was detected by proportion of sub-G1 cell; caspase 3 activity and prostaglandin E2 (PGE2) level were determined by enzyme-linked immunosorbent assay and HT-29 cells migration was assessed using scratch test.

Results:

Garcinol preconditioning markedly decreased the expression of mPGES-1, HIF-1α, VEGF, CXCR4, MMP-2, and MMP-9. The proportion of cells in sub-G1 phase and caspase 3 activity were increased by garcinol treatment whereas the cell proliferation, PGE2 level, and cell migration were decreased in these cells, compared to the control group.

Conclusion:

Our findings suggest that garcinol plays a critical role in elevating apoptosis and inhibiting HT-29 cells proliferation, angiogenesis, and invasion by suppressing the mPGES-1/PGE2/HIF-1α signaling pathways.

Related Topics

    loading  Loading Related Articles