Isometric Midthigh Pull Reliability and Relationship to Deadlift One Repetition Maximum

    loading  Checking for direct PDF access through Ovid

Abstract

De Witt, JK, English, KL, Crowell, JB, Kalogera, KL, Guilliams, ME, Nieschwitz, BE, Hanson, AM, and Ploutz-Snyder, LL. Isometric midthigh pull reliability and relationship to deadlift one repetition maximum. J Strength Cond Res 32(2): 528–533, 2018—The purpose of this investigation was to examine the reliability of the isometric midthigh pull (IMTP) and the relationship between IMTP peak force and deadlift 1 repetition maximum (1RM). Nine subjects (5 men and 4 women; 40.6 ± 8.0 years; 1.72 ± 0.10 m; 75.6 ± 13.4 kg) participated in this study. Isometric midthigh pull and deadlift 1RM were both performed during 2 testing sessions. For IMTP, peak force and peak rate of force development (RFD) were determined, in addition to RFD at 30 ms, 50 ms, 90 ms, 150 ms, 200 ms, and 250 ms after initiation of the pull. Intraclass correlation coefficients (ICCs) were calculated to evaluate the reliability of IMTP measures. Pearson product-moment correlations and linear regression were used to determine associations between IMTP and deadlift 1RM. Isometric midthigh pull peak force was reproducible both within (ICC = 0.98 and 0.97) and between sessions (ICC = 0.89) and significantly correlated with deadlift 1RM (r = 0.88, p ≤ 0.05), but intermediate force outputs and RFD were not. Lack of associations between RFD and deadlift 1RM indicate that the ability to create explosive force may be independent of the ability to create maximal force. The strong relationship between IMTP peak force and deadlift 1RM was present regardless of which IMTP repetition across the 2 sessions was examined. Peak force generated during IMTP is a reliable method to assess full body maximal strength. A single IMTP repetition, provided adequate familiarization and warm-up, correlates strongly with deadlift 1RM. Practitioners can use the IMTP test as a method to estimate maximal deadlift strength in a quick and potentially less provocative manner than traditional 1RM testing.

    loading  Loading Related Articles