Soluble vascular endothelial growth factor receptor-1 is reduced in patients with resistant hypertension after renal denervation

    loading  Checking for direct PDF access through Ovid

Abstract

Renal denervation (RDN) has been shown in several studies to reduce blood pressure (BP) in patients with resistant hypertension (RH). Data on potential biomarkers associated with BP changes remain scarce. We evaluated whether soluble vascular endothelial growth factor receptor (sVEGFR-1) is affected by the procedure. A total of 57 patients with RH participated in this study. BP and heart rate were recorded at baseline and at 3 months follow-up, at which time blood samples were collected to determine the levels of sVEGFR-1, VEGF-A, VEGF-C, nitric oxide (NO), soluble vascular adhesion molecule 1 and soluble intracellular adhesion molecule 1. None of the biomarkers had a predictive value that could identify responders vs non-responders to RDN. However, sVEGFR-1 concentration was dramatically reduced after RDN (5913 ± 385 vs 280 ± 57 pg ml-1, P < 0.001). At the same time VEGF-A levels were significantly increased (10.0 ± 3.0 vs 55.5 ± 7.9 pg ml-1, P < 0.001), without significant changes in VEGF-C. NO levels were significantly increased after RDN in the whole group (82.6 ± 6.2 vs 106.9 ± 7.8 μM, P = 0.021). Interestingly, the elevation in NO levels at 3 months was only seen in patients who demonstrated a reduction in systolic BP of ≥ 10 mm Hg (78.9 ± 8.3 vs 111.6 ± 11.7 μM, P = 0.018). We report a significant reduction in sVEGFR-1 levels after RDN procedure, which was accompanied by a significant increase in VEGF-A concentration as well as NO. Changes in plasma cytokines were not quantitatively linked to magnitude of BP reduction. An RDN-induced reduction in sVEGFR-1 plasma levels and increase in VEGF-A would raise the VEGF-A/sVEGFR-1 ratio, thereby increasing VEGF-A bioavailability to act on its full-length receptor and may contribute to the BP-lowering effect potentially via NO-mediated pathways.

Related Topics

    loading  Loading Related Articles