The potential toxicological insights about the anti-HIV drug azidothymidine-derived monoselenides in human leukocytes: Toxicological insights of new selenium-azidothymidine analogs

    loading  Checking for direct PDF access through Ovid

Abstract

Acquired immunodeficiency syndrome (AIDS) is a worldwide disease characterized by impairments of immune function. AIDS can be associated with oxidative stress (OS) that can be linked to selenium (Se) deficiency. Se is fundamental for the synthesis of selenoproteins, such as glutathione peroxidase and thioredoxin reductase. These enzymes catalyze the decomposition of reactive oxygen species and contribute to maintain equilibrium in cell redox status. Literature data indicate that organoselenium compounds, such as ebselen and diphenyl diselenide, have antioxidant properties in vitro and in vivo models associated with OS. Nevertheless, selenocompounds can also react and oxidize thiols groups, inducing toxicity in mammals. Here, we tested the potential cytotoxic and genotoxic properties of six analogs of the prototypal anti-HIV drug azidothymidine (AZT) containing Se (5′-Se-(phenyl)zidovudine; 5′-Se-(1,3,5-trimethylphenyl)zidovudine; 5′-Se-(1-naphtyl)zidovudine; 5′-Se-(4-chlorophenyl)zidovudine) (C4); 5′-Se-(4-methylphenyl)zidovudine (C5); and 5′-(4-methylbenzoselenoate)zidovudine). C5 increased the rate of dithiothreitol oxidation (thiol oxidase activity) and C2-C4 and C6 (at 100 µM) increased DNA damage index (DI) in human leukocytes. Moreover, C5 (200 µM) decreased human leukocyte viability to about 50%. Taken together, these results indicated the low in vitro toxicity in human leukocytes of some Se-containing analogs of AZT.

Related Topics

    loading  Loading Related Articles