Hsp70 expression induced by Co-Enzyme Q10 protected chicken myocardial cells from damage and apoptosis under in vitro heat stress

    loading  Checking for direct PDF access through Ovid

Abstract

The aim of this study was to investigate whether induction of Hsp70 expression by co-enzyme Q10 (Q10) treatment protects chicken primary myocardial cells (CPMCs) from damage and apoptosis in response to heat stress for 5 hours. Analysis of the expression and distribution of Hsp70 and the levels of the damage-related enzymes creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH), as well as pathological analysis showed that co-enzyme Q10 alleviated the damage caused to CPMCs during heat stress. Further, analysis of cell apoptosis and the expression of cleaved caspase-3 indicated that co-enzyme Q10 did have an anti-apoptotic role during heat stress. Western blot analysis showed that pretreatment with co-enzyme Q10 led to a significant increase in the expression of Hsp70 during heat stress. Immunostaining assays confirmed the results of western blot analysis and also showed that co-enzyme Q10 could accelerate the translocation of Hsp70 into the nucleus during heat stress, but this was not observed in the group that was treated with only co-enzyme Q10. These findings seem to indicate that co-enzyme Q10 protected CPMCs from heat stress via the induction of Hsp70. To investigate this, 200 μM quercetin, an Hsp70 inhibitor, was used to inhibit the expression of Hsp70 2 h before heat stress. Quercetin pre-treatment was observed to suppress the expression of Hsp70 as well the protective function of co-enzyme Q10 at 5 h of heat stress. This finding confirms that Q10 brought about its effects via Hsp70 expression, but the mechanism underlying this needs further investigation.

Related Topics

    loading  Loading Related Articles