Dermal absorption of benzo[a]pyrene into human skin from soil: Effect of artificial weathering, concentration, and exposure duration

    loading  Checking for direct PDF access through Ovid


In vitro assessments of 14C-benzo[a]pyrene (BaP) absorption through human epidermis were conducted with the sub-63-μm fraction of four test soils containing different amounts of organic and black carbon. Soils were artificially weathered for eight weeks and applied to epidermis at nominal BaP concentrations of 3 and 10 mg/kg for 8 or 24 h. Experiments were also conducted at 24 h with unweathered soils and with BaP deposited onto skin from acetone at a comparable chemical load. For the weathered soils, absorption was independent of the amount of organic or black carbon, the mass in the receptor fluid was proportional to exposure duration but independent of concentration, and the mass recovered in the skin after washing was proportional to concentration and independent of exposure time. Results from the weathered and unweathered soils were similar except for the mass recovered in the washed skin, which was lower for the weathered soil only at the higher concentration. We hypothesize that chemical concentrations exceeded the BaP sorption capacity accessible within the artificial weathering timeframe for all soils tested, and that BaP mass in the washed skin was dominated by particles that were not removed by washing. Fluxes into and through skin from soils were lower by an order of magnitude than from acetone-deposited BaP.

Related Topics

    loading  Loading Related Articles