Cytokine and estrogen stimulation of endothelial cells augments activation of the prekallikrein-high molecular weight kininogen complex: Implications for hereditary angioedema

    loading  Checking for direct PDF access through Ovid

Abstract

Background

When the prekallikrein-high molecular weight kininogen complex is bound to endothelial cells, prekallikrein is stoichiometrically converted to kallikrein because of release of heat shock protein-90 (Hsp90). Although bradykinin formation is typically initiated by factor XII autoactivation, it is also possible to activate factor XII either by kallikrein, thus formed, or by plasmin.

Objective

Because attacks of hereditary angioedema can be related to infection and/or exposure to estrogen, we questioned whether estrogen or cytokine stimulation of endothelial cells could augment release of Hsp90 and prekallikrein activation. We also tested release of profibrinolytic enzymes, urokinase, and tissue plasminogen activator (TPA) as a source for plasmin formation.

Methods

Cells were stimulated with agonists, and secretion of Hsp90, urokinase, and TPA was measured in the culture supernatants by ELISA. Activation of the prekallikrein-HK complex was measured by using pro-phe-arg-p-nitroanilide reflecting kallikrein formation.

Results

Hsp90 release was stimulated with optimal doses of estradiol, IL-1, and TNF-α (10 ng/mL) from 15 minutes to 120 minutes. TPA release was not augmented by any of the agonists tested but urokinase was released by IL-1, TNF-α, and thrombin (positive control), but not estrogen. Augmented activation of the prekallikrein-HK complex to generate kallikrein was seen with each agonist that releases Hsp90. Addition of 0.1% factor XII relative to prekallikrein-HK leads to rapid formation of kallikrein; factor XII alone does not autoactivate.

Conclusions

IL-1, TNF-α, and estrogen stimulate release of Hsp90 and augment activation of the prekallikrein-HK complex to generate kallikrein and bradykinin. IL-1 and TNF-α stimulate release of urokinase, which can convert plasminogen to plasmin and represents a possible source for plasmin generation in all types of hereditary angioedema, but particularly hereditary angioedema with normal C1 inhibitor with a factor XII mutation. Both kallikrein and plasmin activate factor XII; kallikrein is 20 times more potent on a molar basis.

Related Topics

    loading  Loading Related Articles