Long noncoding RNA-SRLR elicits intrinsic sorafenib resistance via evoking IL-6/STAT3 axis in renal cell carcinoma

    loading  Checking for direct PDF access through Ovid

Abstract

Although the use of sorafenib appears to increase the survival rate of renal cell carcinoma (RCC) patients, there is also a proportion of patients who exhibit a poor primary response to sorafenib therapy. It is therefore critical to elucidate the mechanisms underlying sorafenib resistance and find representative biomarkers for sorafenib treatment in RCC patients. Herein, we identified a long noncoding RNA referred to as lncRNA-SRLR (sorafenib resistance-associated lncRNA in RCC) that is upregulated in intrinsically sorafenibresistant RCCs. lncRNA-SRLR knockdown sensitized nonresponsive RCC cells to sorafenib treatment, whereas the overexpression of lncRNA-SRLR conferred sorafenib resistance to responsive RCC cells. Mechanistically, lncRNA-SRLR directly binds to NF-κB and promotes IL-6 transcription, leading to the activation of STAT3 and the development of sorafenib tolerance. A STAT3 inhibitor and IL-6-receptor antagonist both restored the response to sorafenib treatment. Moreover, a clinical investigation demonstrated that high levels of lncRNA-SRLR correlated with poor responses to sorafenib therapy in RCC patients. Collectively, lncRNA-SRLR may serve as not only a predictive biomarker for inherent sorafenib resistance but also as a therapeutic target to enhance responses to sorafenib in RCC patients.

    loading  Loading Related Articles