Comparison of the Detection Rate of Simulated Microcalcifications in Full-Field Digital Mammography, Digital Breast Tomosynthesis, and Synthetically Reconstructed 2-Dimensional Images Performed With 2 Different Digital X-ray Mammography Systems

    loading  Checking for direct PDF access through Ovid

Abstract

Objective

The aim of this study was to compare the microcalcification detectability in an anthropomorphic phantom model regarding number, size, and shape in full-field digital mammography (FFDM), synthetically reconstructed 2-dimensional (Synthetic-2D) images, and digital breast tomosynthesis (DBT) performed with 2 different x-ray mammography systems.

Materials and Methods

Simulated microcalcifications of different numbers (0 to >39), sizes (diameter, 100–800 μm), and shapes (round vs heterogeneous) were scattered by random distribution on 50 film phantoms each divided in 4 quadrants. The FFDM and DBT x-rays were taken from each of these 50 films with both x-ray mammography systems (SenoClaire; GE Healthcare, Selenia Dimensions, Hologic) using an anthropomorphic scattering body and automatic exposure control. The resulting exposure factors were similar to a clinical setting. The synthetically reconstructed 2D images were generated automatically on both systems. All FFDM, Synthetic-2D, and DBT images were interpreted in randomized order and independently of each other by 6 radiologists using a structured questionnaire.

Results

The number categories of simulated microcalcifications were correctly evaluated in 55.3% of instances (quadrant by reader) in FFDM, 50.9% in the Synthetic-2D views, and 59.5% in DBT, summarized for 200 quadrants per reader for each Device A and B, respectively. Full-field digital mammography was superior to Synthetic-2D (mean difference, 4%; 95% confidence interval [CI], 2%–7%; P < 0.001), and DBT was superior to both FFDM (mean difference, 4%; 95% CI, 2%–7%; P = 0.002) and Synthetic-2D (mean difference, 9%; 95% CI, 6%–11%; P < 0.001). This trend was consistent in all subgroup analyses. The number of the smallest microcalcifications (100–399 μm) was correctly evaluated in 25.2% of the FFDM, in 14.2% for Synthetic-2D, and in 28.3% of the DBT images. Underestimations of the number of simulated microcalcifications were more common than overestimations. Regarding the size categories of simulated microcalcifications, the rates of correct assessments were in 45.4% of instances in FFDM, 39.9% in the Synthetic-2D views, and 43.6% in DBT, summarized for 200 quadrants per reader and both imaging devices.

Conclusions

In the presented in vitro environment using an anthropomorphic phantom model, standard full-field digital x-ray mammography was superior to synthetically reconstructed 2-dimensional images in the detection of simulated microcalcifications. In view of these results, it is questionable whether Synthetic-2D images can replace FFDM in clinical examinations at the present time. Further investigations are needed to assess the clinical impact of the in vitro results.

Related Topics

    loading  Loading Related Articles