Acute increases in serum colonic short-chain fatty acids elicited by inulin do not increase GLP-1 or PYY responses but may reduce ghrelin in lean and overweight humans

    loading  Checking for direct PDF access through Ovid



Colonic fermentation of dietary fibre to short-chain fatty acids (SCFA) influences appetite hormone secretion in animals, but SCFA production is excessive in obese animals. This suggests there may be resistance to the effect of SCFA on appetite hormones in obesity.


To determine the effects of inulin (IN) and resistant starch (RS) on postprandial SCFA, and gut hormone (glucagon-like peptide (GLP-1), peptide-tyrosine-tyrosine (PYY) and ghrelin) responses in healthy overweight/obese (OWO) vs lean (LN) humans.


Overnight-fasted participants (13 OWO and 12 LN) consumed 300 ml water containing 75 g glucose (GLU) as control or 75 g GLU plus 24 g IN, or 28.2 g RS using a randomised, single-blind, cross-over design. Blood for appetite hormones and SCFA was collected at intervals over 6 h. A standard lunch was served 4 h after the test drink.


Relative to GLU, IN, but not RS, significantly increased SCFA areas under the curve (AUC) from 4-6 h (AUC4-6). Neither IN nor RS affected GLP-1 or PYY-AUC4-6. Although neither IN nor RS reduced ghrelin-AUC4-6 compared with GLU, ghrelin at 6 h after IN was significantly lower than that after GLU (P < 0.05). After IN, relative to GLU, the changes in SCFA-AUC4-6 were negatively related to the changes in ghrelin-AUC4-6 (P = 0.017). SCFA and hormone responses did not differ significantly between LN and OWO.


Acute increases in colonic SCFA do not affect GLP-1 or PYY responses in LN or OWO subjects, but may reduce ghrelin. The results do not support the hypothesis that SCFA acutely stimulate PYY and GLP-1 secretion; however, a longer adaptation to increased colonic fermentation or a larger sample size may yield different results.

Related Topics

    loading  Loading Related Articles