Transcription Factor EB Expression in Early Breast Cancer Relates to Lysosomal/Autophagosomal Markers and Prognosis

    loading  Checking for direct PDF access through Ovid

Abstract

Background:

Disrupting the autophagic balance to trigger autophagic death may open new strategies for cancer therapy. Transcription factor EB (TFEB) is a master regulator of lysosomal biogenesis and may play a role in cancer biology and clinical behavior.

Methods:

The expression of TFEB and the lysosomal cancer cell content (expression of lysosomal associated membrane protein 2a [LAMP2a] and cathepsin D) was studied in a series of 100 T1-stage breast carcinomas. Expression patterns were correlated with autophagy/hypoxia-related proteins, angiogenesis, and clinical outcome. The effect of hypoxic/acidic conditions on TFEB kinetics was studied in the MCF-7 cancer cell line.

Results:

Overexpression of TFEB in cancer cell cytoplasm and the perinuclear/nuclear area was noted in 23 (23%) of 100 cases. High LAMP2a and cathepsin D expression was noted in 30 (30%) of 100 and 28 (28%) of 100 cases, respectively. TFEB expression was directly linked with LAMP2a (P < .0001, r = 0.53), cathepsin D (P = .0002, r = 0.36), light chain 3A (LC3A) (P = .02, r = 0.22), and hypoxia-inducible factor 2-alpha (HIF-2α) (P = .01, r = 0.25) expression and inversely with progesterone receptor (P = .01, r = 0.22). High vascular density was directly linked with LAMP2a (P = .05, r = 0.18) and cathepsin D (P = .005, r = 0.28). In Kaplan-Meier survival analysis, TFEB and cathepsin D expression were related to an ominous prognosis (P = .001 and P = .03, respectively). In multivariate analysis, TFEB expression sustained its independent prognostic significance (P = .05, hazard ratio 2.1). In in vitro experiments, acidity triggered overexpression of TFEB and nuclear translocation.

Conclusion:

Intense TFEB expression and lysosomal biogenesis, evident in one fourth of early breast carcinomas, define poor prognosis. Tumor acidity is among the microenvironmental conditions that trigger TFEB overactivity. TFEB is a sound target for the development of lysosomal targeting therapies.

Micro-Abstract:

Intense transcription factor EB (TFEB) expression and lysosomal biogenesis exists in one fourth of early breast carcinomas (100 cases studied) and relates with poor prognosis. In in vitro experiments, acidity triggered TFEB overexpression. TFEB is a sound target to develop lysosome interference.

Related Topics

    loading  Loading Related Articles