Targeting and modulating infarct macrophages with hemin formulated in designed lipid-based particles improves cardiac remodeling and function

    loading  Checking for direct PDF access through Ovid


Uncontrolled activation of pro-inflammatory macrophages after myocardial infarction (MI) accelerates adverse left ventricular (LV) remodeling and dysfunction. Hemin, an iron-containing porphyrin, activates heme oxygenase-1 (HO-1), an enzyme with anti-inflammatory and cytoprotective properties. We sought to determine the effects of hemin formulated in a macrophage-targeted lipid-based carrier (denoted HA-LP) on LV remodeling and function after MI.

Hemin encapsulation efficiency was ˜ 100% at therapeutic dose levels. In vitro, hemin/HA-LP abolished TNF-α secretion from macrophages, whereas the same doses of free hemin and drug free HA-LP had no effect. Hemin/HA-LP polarized peritoneal and splenic macrophages toward M2 anti-inflammatory phenotype. We next induced MI in mice and allocated them to IV treatment with hemin/HA-LP (10 mg/kg), drug free HA-LP, free hemin (10 mg/kg) or saline, one day after MI. Active in vivo targeting to infarct macrophages was confirmed with HA-LP doped with PE-rhodamine. LV remodeling and function were assessed by echocardiography before, 7, and 30 days after treatment. Significantly, hemin/HA-LP effectively and specifically targets infarct macrophages, switches infarct macrophages toward M2 anti-inflammatory phenotype, improves angiogenesis, reduces scar expansion and improves infarct-related regional function.

In conclusion, macrophage-targeted lipid-based drug carriers with hemin switch macrophages into an anti-inflammatory phenotype, and improve infarct healing and repair. Our approach presents a novel strategy to modulate inflammation and improve infarct repair.

Related Topics

    loading  Loading Related Articles