Hyperforin activates gene transcription involving transient receptor potential C6 channels

    loading  Checking for direct PDF access through Ovid

Abstract

Hypericum perforatum is one of the most prominent medical plants. Hyperforin, a main ingredient of H. perforatum, has been shown to activate transient receptor potential canonical C6 (TRPC6) channels. Alternatively, it has been proposed that hyperforin functions as a protonophore in a TRPC6-independent manner. Here, we show that hyperforin stimulation activates the transcription factor AP-1 in HEK293 cells expressing TRPC6 (T6.11 cells), but did not substantially change the AP-1 activity in HEK293 cells lacking TRPC6. We identified the AP-1 binding site as a hyperforin-responsive element. AP-1 is composed of the transcription factors c-Jun and c-Fos, or other members of the c-Jun and c-Fos families of proteins. Hyperforin stimulation increased c-Jun and c-Fos promoter activities in T6.11 cells and induced an upregulation of c-Jun and c-Fos biosynthesis. The analysis of the c-Fos promoter revealed that the cAMP-response element also functions as a hyperforin-responsive element. Hyperforin-induced upregulation of AP-1 in T6.11 cells was attenuated by preincubation of the cells with either pregnenolone or progesterone, indicating that gene regulation via TRPC6 is under control of hormones or hormonal precursors. The signal transduction of hyperforin-induced AP-1 gene transcription required an influx of Ca2+ ions into the cells, the activation of MAP kinases, and the activation of the transcription factors c-Jun and ternary complex factor. We conclude that hyperforin regulates gene transcription via activation of TRPC6 channels, involving stimulus-regulated protein kinases and stimulus-responsive transcription factors. The fact that hyperforin regulates gene transcription may explain many of the intracellular alterations induced by this compound.

    loading  Loading Related Articles