Pharmacological activation of protein kinase A improves memory loss and neuropathological changes in a mouse model of dementia of Alzheimer’s type

    loading  Checking for direct PDF access through Ovid


The study investigates the therapeutic potential of the protein kinase A (PKA) activator forskolin in cognitive deficits of mice. Streptozotocin (STZ) [3 mg/kg, intracerebroventricularly (i.c.v.)] was used to induce memory deficits in mice, whereas aged mice served as natural model of dementia. Forskolin (2.5, 5, and 10 mg/kg/day, oral) treatment was administered to i.c.v. STZ-treated and aged mice for 14 days. The Morris Water Maze test was used to evaluate learning and memory. Estimation of brain acetylcholinesterase (AChE) activity, brain glutathione, thiobarbituric acid-reactive species, brain myeloperoxidase levels, and histopathological studies were also performed. Both STZ i.c.v. and aging resulted in a marked decline in Morris Water Maze performance, reflecting impairment of learning and memory. STZ i.c.v.-treated mice and aged mice showed a marked accentuation of AChE activity, thiobarbituric acid-reactive species and myeloperoxidase levels along with a decrease in the glutathione level. Further, the stained micrographs of STZ-treated mice and aged mice indicated pathological changes, severe neutrophilic infiltration, and amyloid deposition. Forskolin treatment significantly attenuated STZ-induced and age-related memory deficits, and biochemical and histopathological alterations. The findings indicate that the PKA activator forskolin probably alleviated memory deficits by virtue of its anticholinesterase, antiamyloid, antioxidative, and anti-inflammatory effects. It is concluded that PKA could be explored as a potential therapeutic target in dementia.

Related Topics

    loading  Loading Related Articles