A novel LCMSMS method for quantitative measurement of short-chain fatty acids in human stool derivatized with 12C- and 13C-labelled aniline

    loading  Checking for direct PDF access through Ovid


A novel liquid chromatography tandem mass spectrometry (LCMSMS) method for the quantitative measurement of gut microbial-derived short-chain fatty acids (SCFAs) in human infant stool has been developed and validated. Baseline chromatographic resolution was achieved for 12 SCFAs (acetic, butyric, caproic, 2,2-dimethylbutyric, 2-ethylbutyric, isobutyric, isovaleric, 2-methylbutyric, 4-methylvaleric, propionic, pivalic and valeric acids) within an analysis time of 15 min. A novel sequential derivatization of endogenous and spiked SCFAs in stool via 12C- and 13C-aniline respectively, facilitated the accurate quantitation of 12C-aniline derivatized endogenous SCFAs based on calibration of exogenously 13C-derivatized SCFAs. Optimized quenching of derivatization agents prior to LCMSMS analysis further reduced to negligible levels the confounding chromatographic peak due to in-line derivatization of unquenched aniline with residual acetic acid present within the LCMS system. The effect of residual acetic acid, a common LCMS modifier, in analysis of SCFAs has not been addressed in previous SCFA assays. For the first time, a total of 9 SCFAs (acetic, butyric, caproic, isobutyric, isovaleric, 2-methylbutyric, 4-methylvaleric, propionic and valeric acids) were detected and quantitated in 107 healthy infant stool samples. The abundance and diversity of SCFAs in infant stool vary temporally from 3 weeks onwards and stabilize towards the end of 12 months. This in turn reflects the maturation of infant SCFA-producing gut microbiota community. In summary, this novel method is applicable to future studies that investigate the biological roles of SCFAs in paediatric health and diseases.

Related Topics

    loading  Loading Related Articles