The role of type I interferons in innate and adaptive immunity against viruses in Atlantic salmon

    loading  Checking for direct PDF access through Ovid

Abstract

Type I IFNs (IFN-I) are cytokines, which play a crucial role in innate and adaptive immunity against viruses of vertebrates. In essence, IFN-I are induced and secreted upon host cell recognition of viral nucleic acids and protect other cells against infection by inducing antiviral proteins. Atlantic salmon possesses an extraordinary repertoire of IFN-I genes encompassing at least six different classes (IFNa, IFNb, IFNc, IFNd, IFNe and IFNf) most of which are encoded by several genes. This review describes recent research on the functions of salmon IFNa, IFNb, IFNc and IFNd. As in mammals, expression of different salmon IFN-I in response to virus infection is dependent on their promoters, properties of the virus and the cell's expression of nucleic acid receptors and interferon regulatory factors (IRFs). While IFNa mainly display local antiviral activity, IFNb and IFNc show systemic antiviral activity. In addition, salmon appears to possess several IFN-I receptors, which show selectivity in binding different IFN-I. This complexity in IFN-I and receptors allows for a large variation in functions of the salmon IFN-I. Studies with intramuscular injection of IFN expression plasmids have recently provided surprising results, which may be of relevance for application of IFN-I in prophylaxis against virus infection. Firstly, injection of IFNc plasmid protected salmon presmolts against virus infection for at least 10 weeks. Secondly, IFN plasmids showed potent adjuvant activity when injected together with a DNA vaccine against infectious salmon anemia virus (ISAV).

Related Topics

    loading  Loading Related Articles