The effects ofBacillus coagulans-fermented and non-fermentedGinkgo bilobaon abdominal fat deposition and meat quality of Peking duck

    loading  Checking for direct PDF access through Ovid


In order to evaluate the effects of Bacillus coagulans-fermented Ginkgo biloba (FG) and non-fermented G. biloba (NFG) on abdominal fat deposition and meat quality, 270 female Peking ducks were randomly assigned to the following experimental groups: a control group (fed a basal diet), an NFG group (fed a basal diet + 0.3% NFG), and an FG group (fed a basal diet + 0.3% FG). Body weight and feed intake were recorded weekly, and feed conversion ratio was calculated to assess growth performance. After 6 wk, 18 ducks from each group were killed. Abdominal fat ratio and pH (at 45 min and 24 h postmortem), color parameters (lightness, redness, and yellowness), water-holding capacity, cooking loss, shear force, and intramuscular fat and fatty acid contents were measured. Six more ducks were killed to isolate RNA from their abdominal fat tissue for measurements of peroxisome proliferator-activated receptor-γ (PPARγ), obese (leptin), and adiponectin (ADP) expression using real-time polymerase chain reaction. The results revealed that body weight gain was higher in the FG group than in the control and NFG groups, whereas feed conversion ratio was lower (P < 0.05). The abdominal fat contents were lower in the NFG and FG groups than in the control group (P < 0.05). The NFG and FG groups had lower levels of saturated fatty acids (mainly palmitic acid) and higher levels of polyunsaturated fatty acids (mainly linoleic acid and arachidonic acid) than the control group. The mRNA expressions of PPARγ, leptin, and ADP in abdominal fat tissue were significantly increased in the NFG and FG groups, and the mRNA expression of PPARγ was higher in the FG group than in the NFG group (P < 0.05). These results suggest that fermenting G. biloba reduces the deposition of abdominal fat and improves the fatty acid profile of Peking duck meat.

Related Topics

    loading  Loading Related Articles