Potential of amphiphilic graft copolymer α-tocopherol succinate-g-carboxymethyl chitosan in modulating the permeability and anticancer efficacy of tamoxifen

    loading  Checking for direct PDF access through Ovid

Abstract

Recent studies showed an enhanced oral bioavailability of tamoxifen (TMX) by hydrophobically modified α-tocopherol succinate-g-carboxymethyl chitosan (Cmc-TS) micelles. As a continued effort, here we evaluated TMX-loaded polymeric micelles (TMX-PMs) for its enhanced permeability with increased anticancer efficacy and decreased hepatotoxicity. We employed co-solvent evaporation technique to encapsulate TMX into Cmc-TS. Apparent permeability assay of TMX-PMs was performed on Caco-2 cell line. The absorptive transport of TMX increased significantly about 3.8-fold when incorporated into Cmc-TS PMs. Cytotoxicity of Cmc-TS PMs was studied on MCF-7 cell line by MTT and; confocal microscopy was used for cellular uptake. Confocal microscopy revealed that Cmc-TS PMs could effectively accumulate in the cytosol of MCF-7 cell lines. In vitro data was further validated using N-methyl-N-nitrosourea (MNU)-induced mammary carcinogenesis model in Sprague-Dawley rats. Hepatotoxicity profiles of TMX-PMs at three different doses were also evaluated against the free drug TMX. TMX-PMs were more effective in suppressing breast tumor in MNU-induced mammary carcinoma model than free TMX with better safety profile. In addition, histological data shows that tumors are “benign” in TMX-PMs treated group compared with “malignant” tumors in free TMX treated and control groups. Overall, the results implicate that our Cmc-TS PMs may serve as a promising carrier for the intracellular delivery of anticancer drug molecules via oral route.

Graphical abstract

A novel amphiphilic graft copolymer α-tocopherol succinate-g-carboxymethyl chitosan was synthesized for enhancing the anticancer efficacy of tamoxifen with increased safety profile.

Related Topics

    loading  Loading Related Articles