Unique effect of 4-hydroxyestradiol and its methylation metabolites on lipid and cholesterol profiles in ovariectomized female rats

    loading  Checking for direct PDF access through Ovid

Abstract

Animal studies have shown that endogenous estrogens such as 17β-estradiol (E2) can modulate lipid profiles in vivo, and this effect is generally thought to be mediated by the estrogen receptors (ERs). The present study sought to test a hypothesis that some of the endogenous estrogen metabolites that have very weak estrogenic activity may exert some of their modulating effects on lipid metabolism in an ER-independent manner. Using ovariectomized female rats as an in vivo model, we found that 4-hydroxyestradiol (4-OH-E2) has a markedly stronger effect in reducing the adipocyte size and serum cholesterol level in rats compared to E2, despite the weaker estrogenic activity of 4-OH-E2. Moreover, when E2 or 4-OH-E2 is used in combination with ICI-182,780 (an ER antagonist), some of their lipid-modulating effects are not blocked by this antiestrogen. Interestingly, two of the O-methylation metabolites of 4-OH-E2, namely, 4-methoxyestradiol and 4-methoxyestrone, which have much weaker estrogenic activity, were also found to have similar lipid-modulating effects compared to 4-OH-E2. Mechanistically, up-regulation of the expression of leptin, cytochrome P450 7A1 and LXRα genes is observed in the liver of animals treated with E2 or 4-OH-E2, and the up-regulation is essentially not inhibited by co-treatment with ICI-182,780. These results demonstrate that some of the endogenous E2 metabolites are functionally important modulators of lipid metabolic profiles in vivo. In addition, our findings indicate that an ER-independent pathway likely mediates some of the lipid-modulating effects of endogenous estrogens and their metabolic derivatives.

    loading  Loading Related Articles