Effects of Exercise Induced Dehydration and Glycerol Rehydration on Anaerobic Power in Male Collegiate Wrestlers

    loading  Checking for direct PDF access through Ovid


McKenna, ZJ and Gillum, TL. Effects of exercise induced dehydration and glycerol rehydration on anaerobic power in male collegiate wrestlers. J Strength Cond Res 31(11): 2965–2968, 2017—Wrestlers attempting to reach a specific weight class often use rapid weight loss (RWL). Rapid weight loss is associated with high levels of dehydration, which may hinder athletic performance. Thus, there is a need for wrestlers to optimize rehydration after achieving a specific weight. We sought to observe the effects of RWL on anaerobic power and the impact of glycerol on rehydration and power in male collegiate wrestlers (n = 7, 19.75 ± 1.67 years, 76.8 ± 4.32 kg, 11.6 ± 4.32% body fat, 59.9 ± 6.42 ml·kg−1·min−1). Subjects were assessed for body mass (BM), hydration, and mean power output (Wmean) before exercise (pre), immediately after exercise (3% dehydrated), and 60 minutes after exercise (rehydrated). Participants ran at 70% of V[Combining Dot Above]O2max in a heated room (30° C) until 3% BM loss (BML). Subjects rehydrated drinking either 26 ml·kg−1 of water (control) or a 3% glycerol (treatment) solution containing 26 ml·kg−1 of water and 1 g·kg−1 of glycerol. Participants lost 3.00 ± 0.31% (control) and 2.89 ± 0.26% (treatment) of their BM from the pre- to dehydrated conditions. Wmean (control: 659.29 ± 79.12, 651.43 ± 70.71, 659.71 ± 82.78; treatment: 647.71 ± 110.64, 644.57 ± 118.15, 638.14 ± 100.71) did not differ across time (p = 0.87) nor condition (p = 0.80). In addition, glycerol had no significant impact on acute hydration (control: urine-specific gravity [SG] = 1.019 ± 0.010; treatment: SG = 1.017 ± 0.017). These data show that 3% BML did not impair anaerobic performance, and furthermore that glycerol proved ineffective for rehydration in a match like scenario for the competing wrestler.

Related Topics

    loading  Loading Related Articles