MicroRNA-182-5p Regulates Nerve Injury–induced Nociceptive Hypersensitivity by Targeting Ephrin Type-b Receptor 1

    loading  Checking for direct PDF access through Ovid

Abstract

Background:

The authors and others have previously shown that the up-regulation of spinal ephrin type-b receptor 1 plays an essential role in the pathologic process of nerve injury–induced nociceptive hypersensitivity, but the regulatory mechanism remains unclear.

Methods:

Radiant heat and von Frey filaments were applied to assess nociceptive behaviors. Real-time quantitative polymerase chain reaction, Western blotting, fluorescence in situ hybridization, immunofluorescence, immunohistochemistry, dual-luciferase reporter gene assays, recombinant lentivirus, and small interfering RNA were used to characterize the likely mechanisms.

Results:

Periphery nerve injury induced by chronic constriction injury of the sciatic nerve significantly reduced spinal microRNA-182-5p (miR-182-5p) expression levels, which were inversely correlated with spinal ephrin type-b receptor 1 expression (R2 = 0.90; P < 0.05; n = 8). The overexpression of miR-182-5p in the spinal cord prevented and reversed the nociceptive behaviors induced by sciatic nerve injury, accompanied by a decreased expression of spinal ephrin type-b receptor 1 (recombinant lentiviruses containing pre-microRNA-182: 1.91 ± 0.34 vs. 1.24 ± 0.31, n = 4; miR-182-5p mimic: 2.90 ± 0.48 vs. 1.51 ± 0.25, n = 4). In contrast, the down-regulation of spinal miR-182-5p facilitated the nociceptive behaviors induced by sciatic nerve injury and increased the expression of spinal ephrin type-b receptor 1 (1.0 ± 0.26 vs. 1.74 ± 0.31, n = 4). Moreover, the down-regulation of miR-182-5p and up-regulation of ephrin type-b receptor 1 caused by sciatic nerve injury were mediated by the N-methyl-D-aspartate receptor.

Conclusions:

Collectively, our findings reveal that the spinal ephrin type-b receptor 1 is regulated by miR-182-5p in nerve injury–induced nociceptive hypersensitivity.

Related Topics

    loading  Loading Related Articles