MicroRNA-150 Modulates Ischemia-Induced Neovascularization in Atherosclerotic Conditions

    loading  Checking for direct PDF access through Ovid

Abstract

Objective—

Hypercholesterolemia is an atherosclerotic condition that is associated with impaired neovascularization in response to ischemia. This study sought to define the role of microRNAs in that pathophysiology.

Approach and Results—

Next-generation sequencing and quantitative reverse transcription polymerase chain reaction analyses identified miR-150 as a proangiogenic microRNA, which expression is significantly reduced in the ischemic muscles of hypercholesterolemic apolipoprotein E–deficient (ApoE−/−) mice, and in human umbilical vein endothelial cells exposed to oxidized low-density lipoprotein. Forced expression of miR-150 using a miR mimic could rescue oxidized low-density lipoprotein–mediated impairment of endothelial cell migration and tubule formation in vitro. In a mouse model of hindlimb ischemia, intramuscular injection of miR-150 mimic restored blood flow recuperation, vascular densities in ischemic muscles, and functional mobility in ApoE−/− mice. Treatment of ApoE−/− mice with miR-150 also increased the number and the activities of proangiogenic cells. miR-150 targets SRC kinase signaling inhibitor 1, an important regulator of Src (proto-oncogene tyrosine-protein kinase Src) activity. Here we found that hypercholesterolemia and oxidized low-density lipoprotein exposure are associated with increased SRC kinase signaling inhibitor 1 expression and decreased Src activity. However, treatment with miR-150 mimic reduces SRC kinase signaling inhibitor 1 expression and restores Src and downstream endothelial nitric oxide synthase and Akt (protein kinase B) activities both in vitro and in vivo. We also demonstrate the interrelation between miR-150 and SRC kinase signaling inhibitor 1 and their importance for endothelial cell angiogenic activities.

Conclusions—

Hypercholesterolemia is associated with reduced expression of miR-150, impaired Src signaling, and inefficient neovascularization in response to ischemia. Forced expression of miR-150 using a miR mimic could constitute a novel therapeutic strategy to improve ischemia-induced neovascularization in atherosclerotic conditions.

Related Topics

    loading  Loading Related Articles