Google Maps offers a new way to evaluate claudication

    loading  Checking for direct PDF access through Ovid



Accurate determination of walking capacity is important for the clinical diagnosis and management plan for patients with peripheral arterial disease. The current “gold standard” of measurement is walking distance on a treadmill. However, treadmill testing is not always reflective of the patient's natural walking conditions, and it may not be fully accessible in every vascular clinic. The objective of this study was to determine whether Google Maps, the readily available GPS-based mapping tool, offers an accurate and accessible method of evaluating walking distances in vascular claudication patients.


Patients presenting to the outpatient vascular surgery clinic between November 2013 and April 2014 at the Ottawa Hospital with vasculogenic calf, buttock, and thigh claudication symptoms were identified and prospectively enrolled in our study. Onset of claudication symptoms and maximal walking distance (MWD) were evaluated using four tools: history; Walking Impairment Questionnaire (WIQ), a validated claudication survey; Google Maps distance calculator (patients were asked to report their daily walking routes on the Google Maps-based tool, and walking distances were calculated accordingly); and treadmill testing for onset of symptoms and MWD, recorded in a double-blinded fashion.


Fifteen patients were recruited for the study. Determination of walking distances using Google Maps proved to be more accurate than by both clinical history and WIQ, correlating highly with the gold standard of treadmill testing for both claudication onset (r = .805; P < .001) and MWD (r = .928; P < .0001). In addition, distances were generally under-reported on history and WIQ. The Google Maps tool was also efficient, with reporting times averaging below 4 minutes.


For vascular claudicants with no other walking limitations, Google Maps is a promising new tool that combines the objective strengths of the treadmill test and incorporates real-world walking environments. It offers an accurate, efficient, inexpensive, and readily accessible way to assess walking distances in patients with peripheral vascular disease.

Related Topics

    loading  Loading Related Articles