The maternal plasma proteome changes as a function of gestational age in normal pregnancy: a longitudinal study

    loading  Checking for direct PDF access through Ovid

Abstract

OBJECTIVE:

Pregnancy is accompanied by dramatic physiological changes in maternal plasma proteins. Characterization of the maternal plasma proteome in normal pregnancy is an essential step for understanding changes to predict pregnancy outcome. The objective of this study was to describe maternal plasma proteins that change in abundance with advancing gestational age and determine biological processes that are perturbed in normal pregnancy.

STUDY DESIGN:

A longitudinal study included 43 normal pregnancies that had a term delivery of an infant who was appropriate for gestational age without maternal or neonatal complications. For each pregnancy, 3 to 6 maternal plasma samples (median, 5) were profiled to measure the abundance of 1125 proteins using multiplex assays. Linear mixed-effects models with polynomial splines were used to model protein abundance as a function of gestational age, and the significance of the association was inferred via likelihood ratio tests. Proteins considered to be significantly changed were defined as having the following: (1) >1.5-fold change between 8 and 40 weeks of gestation; and (2) a false discovery rate–adjusted value of P < .1. Gene ontology enrichment analysis was used to identify biological processes overrepresented among the proteins that changed with advancing gestation.

RESULTS:

The following results were found: (1) Ten percent (112 of 1125) of the profiled proteins changed in abundance as a function of gestational age; (2) of the 1125 proteins analyzed, glypican-3, sialic acid-binding immunoglobulin-type lectin-6, placental growth factor, C-C motif-28, carbonic anhydrase 6, prolactin, interleukin-1 receptor 4, dual-specificity mitogen-activated protein kinase 4, and pregnancy-associated plasma protein-A had more than a 5-fold change in abundance across gestation (these 9 proteins are known to be involved in a wide range of both physiological and pathological processes, such as growth regulation, embryogenesis, angiogenesis immunoregulation, inflammation etc); and (3) biological processes associated with protein changes in normal pregnancy included defense response, defense response to bacteria, proteolysis, and leukocyte migration (false discovery rate, 10%).

CONCLUSION:

The plasma proteome of normal pregnancy demonstrates dramatic changes in both the magnitude of changes and the fraction of the proteins involved. Such information is important to understand the physiology of pregnancy and the development of biomarkers to differentiate normal vs abnormal pregnancy and determine the response to interventions.

Related Topics

    loading  Loading Related Articles