Plasticity of Auricular Cartilage in Response to Hormone Therapy

    loading  Checking for direct PDF access through Ovid

Abstract

Introduction

Correction of auricular deformities can be accomplished through splinting within the first few weeks of life. This is hypothesized to be due to retained circulating maternal estrogens decreasing the structural density of collagen; however, this has not been fully tested. Cartilage elasticity is dependent on the concentration of the proteoglycan aggregate, and hyaluronic acid, a constituent of proteoglycan aggregate, is increased by estrogens. Nonsurgical correction of these deformities in more developed patients has the potential to change clinical practice and eliminate surgical risks. Previous studies have demonstrated preliminary promise with the use of injectable estrogen to treat auricular deformities. For this study, we have validated an animal model and demonstrated the feasibility of a more therapeutically appropriate topical estrogen treatment in restoring neonatal plasticity of auricular cartilage.

Methods

Ears of 12 New Zealand rabbits were folded and splinted, and assigned an experimental group (estrogen, placebo, and untreated control) (n = 8 ears). Treatment ears received topical estrogen or placebo cream daily for 4 weeks, whereas controls received no treatment. The splints were removed following 2 additional weeks, and photographs were taken to calculate the retained fold angle. Biopsies were also taken for histologic analysis.

Results

The 8 control ears showed a statistically increased angle from a folded orientation of 46.6 degrees to return of ear position to a normal upright position of 151.2 degrees by the fourth day after splint removal. Both the estrogen-treated and placebo-treated ears responded to splinting with maintained folding (36.6 degrees and 32.5 degrees, respectively). Auricular cartilage thickness trended toward thicker in ears treated with estrogen, consistent with increased matrix components.

Conclusions

Estrogen and placebo treatment with splinting of ears lead to a significant change to the cartilage configuration, validating the model. The results of this study are very encouraging and provide the foundation for a noninvasive therapeutic approach for correcting auricular deformities. Future work will include a more detailed mechanistic study evaluating the dosing of estrogen and the efficiency of dermal penetration as well as evaluating the long-term outcomes and molecular mechanism-associated cartilaginous responses to estrogen.

    loading  Loading Related Articles