Dopaminergic modulation of reward-guided decision making in alcohol-preferring AA rats

    loading  Checking for direct PDF access through Ovid

Abstract

R**esults from animal gambling models have highlighted the importance of dopaminergic neurotransmission in modulating decision making when large sucrose rewards are combined with uncertainty. The majority of these models use food restriction as a tool to motivate animals to accomplish operant behavioral tasks, in which sucrose is used as a reward. As enhanced motivation to obtain sucrose due to hunger may impact its reward-seeking effect, we wanted to examine the decision-making behavior of rats in a situation where rats were fed ad libitum. For this purpose, we chose alcohol-preferring AA (alko alcohol) rats, as these rats have been shown to have high preference for sweet agents. In the present study, AA rats were trained to self-administer sucrose pellet rewards in a two-lever choice task (one pellet vs. three pellets). Once rational choice behavior had been established, the probability of gaining three pellets was decreased over time (50%, 33%, 25% then 20%). The effect of d-amphetamine on decision making was studied at every probability level, as well as the effect of the dopamine D1 receptor agonist SKF-81297 and D2 agonist quinpirole at probability levels of 100% and 25%. d-Amphetamine increased unprofitable choices in a dose-dependent manner at the two lowest probability levels. Quinpirole increased the frequency of unprofitable decisions at the 25% probability level, and SKF-82197 did not affect choice behavior. These results mirror the findings of probabilistic discounting studies using food-restricted rats. Based on this, the use of AA rats provides a new approach for studies on reward-guided decision making.

    loading  Loading Related Articles