Experimental validation of the tuneable diaphragm effect in modern acoustic stethoscopes

    loading  Checking for direct PDF access through Ovid

Abstract

Purpose

The force with which the diaphragm chestpiece of a stethoscope is pressed against the body of a patient during an auscultation examination introduces the initial stress and deformation to the diaphragm and the underlying tissues, thus altering the acoustic parameters of the sound transmission path. If the examination is performed by an experienced physician, he will intuitively adjust the amount of the force in order to achieve the optimal sound quality. However, in case of becoming increasingly popular auto-diagnosis and telemedicine auscultation devices with no such feedback mechanisms, the question arises regarding the influence of the possible force mismatch on the parameters of the recorded signal.

Design

The present study describes the results of the experimental investigations on the relation between pressure applied to the chestpiece of a stethoscope and parameters of the transmitted bioacoustic signals. The experiments were carried out using various stethoscopes connected to a force measurement system, which allowed to maintain fixed pressure during auscultation examinations. The signals were recorded during examinations of different volunteers, at various auscultation sites.

Results

The obtained results reveal strong individual and auscultation-site variability.

Conclusions

It is concluded that the underlying tissue deformation is the primary factor that alters the parameters of the recorded signals.

Related Topics

    loading  Loading Related Articles