NOTCH1-mutated chronic lymphocytic leukemia cells are characterized by a MYC-related overexpression of nucleophosmin 1 and ribosome-associated components

    loading  Checking for direct PDF access through Ovid


In chronic lymphocytic leukemia (CLL), the mechanisms controlling cell growth and proliferation in the presence of NOTCH1 mutations remain largely unexplored. By performing a gene expression profile of NOTCH1-mutated (NOTCH1-mut) versus NOTCH1 wild-type CLL, we identified a gene signature of NOTCH1-mut CLL characterized by the upregulation of genes related to ribosome biogenesis, such as nucleophosmin 1 (NPM1) and ribosomal proteins (RNPs). Activation of NOTCH1 signaling by ethylenediaminetetraacetic acid or by coculture with JAGGED1-expressing stromal cells increased NPM1 expression, and inhibition of NOTCH1 signaling by either NOTCH1-specific small interfering RNA (siRNA) or γ-secretase inhibitor reduced NPM1 expression. Bioinformatic analyses and in vitro activation/inhibition of NOTCH1 signaling suggested a role of MYC as a mediator of NOTCH1 effects over NPM1 and RNP expression in NOTCH1-mut CLL. Chromatin immunoprecipitation experiments performed on NOTCH1 intracellular domain (NICD)-transfected CLL-like cells showed the direct binding of NOTCH1 to the MYC promoter, and transfection with MYC-specific siRNA reduced NPM1 expression. In turn, NPM1 determined a proliferation advantage of CLL-like cells, as demonstrated by NPM1-specific siRNA transfection. In conclusion, NOTCH1 mutations in CLL are associated with the overexpression of MYC and MYC-related genes involved in protein biosynthesis including NPM1, which are allegedly responsible for cell growth and/or proliferation advantages of NOTCH1-mut CLL.

Related Topics

    loading  Loading Related Articles