Nanoparticles as safe and effective delivery systems of antifungal agents: Achievements and challenges

    loading  Checking for direct PDF access through Ovid


Invasive fungal infections are becoming a major health concern in several groups of patients leading to severe morbidity and mortality. Moreover, cutaneous fungal infections are a major cause of visits to outpatient dermatology clinics. Despite the availability of several effective agents in the antifungal drug arena, their therapeutic outcome is less than optimal due to limitations related to drug physicochemical properties and toxicity. For instance, poor aqueous solubility limits the formulation options and efficacy of several azole antifungal drugs while toxicity limits the benefits of many other drugs. Nanoparticles hold great promise to overcome these limitations due to their ability to enhance drug aqueous solubility, bioavailability and antifungal efficacy. Further, drug incorporation into nanoparticles could greatly reduce its toxicity. Despite these interesting nanoparticle features, there are only few marketed nanoparticle-based antifungal drug formulations. This review sheds light on different classes of nanoparticles used in antifungal drug delivery, such as lipid-based vesicles, polymeric micelles, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions and dendrimers with emphasis on their advantages and limitations. Translation of these nanoformulations from the lab to the clinic could be facilitated by focusing the research on overcoming problems related to nanoparticle stability, drug loading and high cost of production and standardization.

Related Topics

    loading  Loading Related Articles