Early-Life Benzo[a]Pyrene Exposure Causes Neurodegenerative Syndromes in Adult Zebrafish (Danio rerio) and the Mechanism Involved

    loading  Checking for direct PDF access through Ovid


There is increasing recognition of the importance of early-life environmental exposures in health disorders at later-life stages. The aim of this study was to evaluate whether early-life exposure to benzo[a]pyrene (BaP) could induce neurodegenerative syndromes at later-life stages in zebrafish. Embryos were exposed to BaP at doses of 0, 0.05, 0.5, 5, and 50 nM from early embryogenesis to 96 h post-fertilization (hpf), then transferred to clean water and maintained for 365 days. We found that BaP decreased locomotor and cognitive ability, neurotransmitter levels of dopamine, 3,4-dihydroxyphenylacetic acid and norepinephrine; and induced loss of dopaminergic neurons and resulted in neurodegeneration. Additionally, BaP increased amyloid β protein and cell apoptosis in the adult zebrafish brain. Further, DNA methyltransferase 1 (DNMT1) and DNMT3a were up-regulated in 96 hpf larvae and the adult brain. MeDIP-sequencing data of the 96 hpf larvae identified 235 differentially methylated genes in promoter, with the fold change > 1.5. Guanylate cyclase 2F (gucy2f) and dopamine receptor D4 related sequence (drd4-rs) were hypermethylation promoters, whereas zinc finger C4H2 domain (zc4h2) was a hypomethylation promoter in 96 hpf larvae and the adult brain. The mRNA levels of gucy2f and drd4-rs were down-regulated, and zc4h2 was up-regulated. Our findings suggested that the lasting modifications of DNA methylation were associated with neurodegenerative syndromes in adult zebrafish as a result of early-life BaP exposure.

Related Topics

    loading  Loading Related Articles