Distinct white matter alterations following severe stroke: Longitudinal DTI study in neglect

    loading  Checking for direct PDF access through Ovid

Abstract

Objective:

To distinguish white matter remodeling directly induced by stroke lesion from that evoked by remote network dysfunction, using spatial neglect as a model.

Methods:

We examined 24 visual neglect/extinction patients and 17 control patients combining comprehensive analyses of diffusion tensor metrics and global fiber tracking with neuropsychological testing in the acute (6.3 ± 0.5 days poststroke) and chronic (134 ± 7 days poststroke) stroke phases.

Results:

Compared to stroke controls, patients with spatial neglect/extinction displayed longitudinal white matter alterations with 2 defining signatures: (1) perilesional degenerative changes characterized by congruently reduced fractional anisotropy and increased radial diffusivity (RD), axial diffusivity, and mean diffusivity, all suggestive of direct axonal damage by lesion and therefore nonspecific for impaired attention network and (2) transneuronal changes characterized by an increased RD in contralesional frontoparietal and bilateral occipital connections, suggestive of primary periaxonal involvement; these changes were distinctly related to the degree of unrecovered neglect symptoms in chronic stroke, hence emerging as network-specific alterations.

Conclusions:

The present data show how stroke entails global alterations of lesion-spared network architecture over time. Sufficiently large lesions of widely interconnected association cortex induce distinct, large-scale structural reorganization in domain-specific network connections. Besides their relevance to unrecovered domain-specific symptoms, these effects might also explain mechanisms of domain-general deficits in stroke patients, pointing to potential targets for therapeutic intervention.

Related Topics

    loading  Loading Related Articles