Noninvasive Imaging of Stored Red Blood Cell-Transfusion Aggravating Sepsis-Induced Liver Injury Associated with Increased Activation of M1-Polarized Kupffer Cells

    loading  Checking for direct PDF access through Ovid

Abstract

Liver injury has a critical effect on the severity and outcome of sepsis. The impact of stored red blood cells (RBCs) on the pathogenesis of sepsis-associated hepatic injury is not well understood. Therefore, to investigate the effects of stored-RBC transfusion on sepsis-induced liver damage as well as the associated mechanism, we constructed a sepsis mouse model enabling noninvasive imaging of bacterial infection caused by Pseudomonas aeruginosa, a common gram-negative respiratory pathogen. We showed that transfusions with stored RBCs enhanced sepsis-induced liver injury in vivo, and liver injury exacerbated the severity of sepsis and decreased survival in P aeruginosa-infected mice. Stored-RBC transfusions enhanced the production of proinflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin 6 (IL-6), and IL-1β, which play important roles in sepsis-associated liver injury in P aeruginosa-infected mice. Further study showed that the enhanced inflammation observed was associated with increased activation of M1-polarized Kupffer cells, which produce many inflammatory cytokines, including TNF-α and IL-6. Moreover, the M1-polarized Kupffer cells and secreted proinflammatory cytokines exerted their effects on hepatocytes through enhanced Jun N-terminal kinase activation and inhibited nuclear factor-kappaB activation, demonstrating that transfusion with stored RBCs disrupted the balance between cell survival and cell death in the liver. Understanding the mechanisms whereby stored RBCs might contribute to these complications will likely be helpful in providing guidance toward making transfusions safer.

Related Topics

    loading  Loading Related Articles