Coordinated nitrogen and carbon remobilization for nitrate assimilation in leaf, sheath and root and associated cytokinin signals during early regrowth ofLolium perenne

    loading  Checking for direct PDF access through Ovid


Background and Aims

The efficiency of N assimilation in response to defoliation is a critical component of plant regrowth and forage production. The aim of this research was to test the effect of the internal C/N balance on Symbol assimilation and to estimate the associated cytokinin signals following defoliation of perennial ryegrass (Lolium perenne L. ‘Grasslands Nui’) plants.


Plants, manipulated to have contrasting internal N content and contrasting availability of water soluble carbohydrates (WSCs), were obtained by exposure to either continuous light or short days (8:16 h light-dark), and watered with modified N-free Hoagland medium containing either high (5 mM) or low (50 μM) Symbol as sole N source. Half of the plants were defoliated and the root, sheath and leaf tissue were harvested at 8, 24 and 168 h after cutting. The spatiotemporal changes in WSCs, synthesis of amino acids and associated cytokinin content were recorded after cutting.

Key Results

Leaf regrowth following defoliation involved changes in the low- and high-molecular weight WSCs. The extent of the changes and the partitioning of the WSC following defoliation were dependant on the initial WSC levels and the C and N availability. Cytokinin levels varied in the sheath and root as early as 8 h following defoliation and preceded an overall increase in amino acids at 24 h. Subsequently, negative feedback brought the amino acid response back towards pre-defoliation levels within 168 h after cutting, a response that was under control of the C/N ratio.


WSC remobilization in the leaf is coordinated with N availability to the root, potentially via a systemic cytokinin signal, leading to efficient N assimilation in the leaf and the sheath tissues and to early leaf regrowth following defoliation.

Related Topics

    loading  Loading Related Articles