Monte Carlo Simulations Comparing the Response of a Novel Hemispherical Tepc to Existing Spherical and Cylindrical Tepcs for Neutron Monitoring and Dosimetry

    loading  Checking for direct PDF access through Ovid


Neutron dosimetry in reactor fields is currently mainly conducted with unwieldy flux monitors. Tissue Equivalent Proportional Counters (TEPCs) have been shown to have the potential to improve the accuracy of neutron dosimetry in these fields, and Multi-Element Tissue Equivalent Proportional Counters (METEPCs) could reduce the size of instrumentation required to do so. Complexity of current METEPC designs has inhibited their use beyond research. This work proposes a novel hemispherical counter with a wireless anode ball in place of the traditional anode wire as a possible solution for simplifying manufacturing. The hemispherical METEPC element was analyzed as a single TEPC to first demonstrate the potential of this new design by evaluating its performance relative to the reference spherical TEPC design and a single element from a cylindrical METEPC. Energy deposition simulations were conducted using the Monte Carlo code PHITS for both monoenergetic 2.5 MeV neutrons and the neutron energy spectrum of 252Cf-D2O moderated. In these neutron fields, the hemispherical counter appears to be a good alternative to the reference spherical geometry, performing slightly better than the cylindrical counter, which tends to underrespond to H*(10) for the lower neutron energies of the 252Cf-D2O moderated field. These computational results are promising, and if follow-up experimental work demonstrates the hemispherical counter works as anticipated, it will be ready to be incorporated into an METEPC design.

    loading  Loading Related Articles