Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification

    loading  Checking for direct PDF access through Ovid

Abstract

Summary:

State-of-the-art light and electron microscopes are capable of acquiring large image datasets, but quantitatively evaluating the data often involves manually annotating structures of interest. This process is time-consuming and often a major bottleneck in the evaluation pipeline. To overcome this problem, we have introduced the Trainable Weka Segmentation (TWS), a machine learning tool that leverages a limited number of manual annotations in order to train a classifier and segment the remaining data automatically. In addition, TWS can provide unsupervised segmentation learning schemes (clustering) and can be customized to employ user-designed image features or classifiers.

Availability and Implementation:

TWS is distributed as open-source software as part of the Fiji image processing distribution of ImageJ at http://imagej.net/Trainable_Weka_Segmentation.

Contact:

ignacio.arganda@ehu.eus

Supplementary information:

Supplementary data are available at Bioinformatics online.

Related Topics

    loading  Loading Related Articles